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INTENSITY INTERFEROMETRY IN THE SPATIAL DOMAIN

ABSTRACT

Intensity interferometry, as develuped by Hanbury Brown and Twiss
for stellar observation, has shown reiative insensitivity to atmospheric
scintillation. However, with classica! sources, the limitatiens placed
on this technique by quantum nrise and deteclor efficiency arc severe,
This situation is vastly improved when laser iilumination is employed.

A modification of the Hanbury Brown - Twiss experiment is described whereby
intensity correlzti.< is performed using coherent light and the statis-
tical averages a:¢ taken in the space domain. Generalizing a form of

the mutual cohereciite function, the far-zone behavior of the mutual inten-
sity function for an intermediate time average is derived. This result
is used to reconstruct the irradizmce distributiosn of a spatially rough
source. The far-ficld intemsity distribution is recorded spatially for
one time-resolutica unit of the detector. The resulting spatial signal
is autocorrelated and relsted to the intensitv distribution over the
source, Thus, without averaging in the time domain, a spatial Fourier-
transform relation is derived setween the far-{izld intensity correlation
and the source irradiance, similar to +ng¢ results of Hanbury Brown and
Twiss.

A major limitation of intensity interferom2try in bcth the space
and time domains has been tnat ouly sources of even symmeiry could be
uniquely inferred from far-field intensity corrz=lat’ons, since only ths
modulus was derived. However, this restriction can be reraved by peo-
cessing, in addition, the field in a simple way before detectisa to :0la
2 new symmetrized function., This intensity record corresponds tc¢ the
radiation pattern derived from the pure even part of the intensity pro-
file. The record is autocorrelated, as befsra, yielding a spatial power
spectrum. But by the central-ordirate and hermitisa properties of the
spatial Fourier transfowm, the resal part of the transfcrmation can be
specified exactly from the symmet::ized record. Using the modulus of the

Preceding page biank




total transform together with the real part of the transform, one can

infer the phase to within a sign. Thus a pair of images is derived, one »
srect, the other invertsd. This ambiguity can be resolved, however, by ;
transiating the source in a known direction off axis.

The results derived for the spatial detecticn of intemnsity fluctu-
ations are shown to be similar to previous results dealing with the phe- :
nomenon of laser speckie in terms of the spatial transform relstions. 3
However, the criterion of decector time resolution, central to the resulcs 1
of intensity interferometry, is absent for laser speckle effects. Thus, 3

it can be inferred that the utility of “niensity interferometry is based 3
on the detection of a time-variant speckle pattern.

Finally, experimental evideuce is offered to support the spatial

transform relations predicted here. In addition, a time-domain intensity- :
correlation experiment is perfermed, the purpose of which is ts infer the x

existence of a time-varying speckle pattern.
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PREFACE

The history of intensity incerferometry is rooted in the work of
Hanbury Brown and Twiss. Their earliest investigationsl* dealt with the
problem of resolving stellar radio sources by a technique involving the
correlation of the squared outputs of two receivers. The advantages are
the reduction of certain kinds of experimental constraints as well as 2
the comparative insensitivity of the method to atmospheric scintillat.on.
A preliminary conclusion reached at that time was that this technique of
intensity correlation would not be appiicable at optical frequencies
because of limitations imposed by photon noise. However, in later work,
Hanbury Brown and Twiss showsd that meaningful intensity correlations
could be made at optical frequencies cven with highly degenerate sources,
The limitations placed on this approach by quantum noise and detector

efficiency have been severe, calling for highly refined experimental
technique.

For laser illumination, the situation 1is very different. The signal-
to-noise ratio can be typically increased by six orders of magnitude.
However, the statistics of the source must be considered in the measure-
ment, The key to relating intensity correlations to some property
involving field correlations lies in the assumption of gaussian statis-
tics,” for which all higher moments are devermined from the first and
second. Single-mode lasers, thcugh, are distinctly non-gaussian in their
temporal statistics and, therefore, cannot be described by thecry framed
for thermal sources. But with the addition of axial modes. I

it has been
asserted® that the field amplitude becomes nearly gaussian distributed.

The principal formula used by Hanbury Brown and Twiss [Ref. 3b,

Eq. (2.1)] to infer the diameter of a distant source shows that the time-
averaged correlation of intensities at two points is equal to the product
of a function involving the temporal characteristics of the source with
the square of the spatial-Fourier transform of the source intensity dis-
tribution. Consideration of the source temporal statistics is necessary
if the intensity-product output of the detectors is averaged in the time
domain (as it nearly always is) to overcome the limitations imposed by
photon and detector noise and possibly reduce scintillation effects pro-
duced by transmission through the atmosphere. If the intent of an inten-
sity correlation experiment is to gain information concerning the source

intensity distribution, then the temporal statistics may be of little
interest in themselves.

L ot i b i Eueoge L el

Intensity interferometry can be understood as a two-point ccrrelation
of intensities following the squaring of the electric field at the
detector. If the source is quasi-monochromatic, each differential ele-
ment on the object emits a number of temporal modes that interfere with
cach other at the detector. If the detector has sufficient bandwidth to

4 Lo b

*References are listed on page 66.
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g, detect the~~ beat frequencies, the amplitude and phase of the incoming

s, intensity beats are utilized. What is sufficient depends on the band-
width of the source. For a thermal source, most beat frequencies are
too high to be resolved even with the megacycle response of the Hanbury
: Brown - Twiss apparatus. For a single-mr’c¢ laser, all beat frequencies
-3 could be 1°'ss than 100 Hz. It is comaionly argued that, in these circum-
* stances, t : random fluctuations of ti'e temporal statistics from dif-
. ferent poi.ts of the source cause the beat frequencies from each source
T point to add incoherently at the detector. The time-averaged intensity
kS correlation is then proportiocnal to the squared spatial Fourier trans-
E- form of the source intensity. This approach gives essentially a squared
T versicn of the van Cittert-Zernike theorem.

¢ We wish to suggest that the requirement of surface roughness at the

]’* 3 source (to assure spatial incoherence) is sufficient to guarantee the

. 3 incolierent addition of beat frequencies at the intensity detectors.

E 3 Thus, if temporal noise (photon noise, time-dependent detector noise)

E is largely absent in a local spatial sense, as might be the case with a

- multi-axial-mede laser with photographic detection, then the intensity

: information might be gathered during one resolution time of the detector
over a plane section normal to the direction of light propagation. Any
noise arising in the process would be spatial, and might be averaged out
by taking a sufficiently large area of spatial correlation. The reduc-

E 3 tion of atmospheric spatial noise would be similar to a nrocess known as

. aperture averaging.8 Film-grain noise would be extremely well averaged

B by the relatively large area of averaging.

£ The relative insensitivity of intensity interferometry to turbulence
= 3 can be shown? if the propagation medium is assumed to be dispersionless
E - over the range of carrier frequencies. Because each temporal frequency
: 3 sees the same refractive index, the differential (beat) frequencies
remain unchanged. However, the spatial-Fourier-transform relation between
the source and the far-field scales as the average frequency, not the
T beat frequency, and thus the resolution afforded by optical frequencies
3 is maintairned.

bbbt at el

The idea of examining spatial beat {requencies of second-order
: E correlation is, of course, not new. Many classical field-correlation |
: 3 interferometers, as well as holographic experiments, are built on this .
, principle, involving a spatial or time lag buetween interfering beams of 3
. the same source. More difficult is the spatial recording of bsats from E
two independent sources, as demonstrated by Magyar and Mandel.

by 1y p 3

In this thesis, we examine the subject of intensity interferor.etry
in the spatial domain. In Section 1, an introduction to this field is
given, leading up to the results 8f Hanbury Brown and Twiss and the

9 extension of their work by Gamo.1¥ In Section 2 using as a basis a
E 3 mathematical framework due to Marchand and Wolf,11 we generalize the
R concept of the m» - 1 r~herence function to time averaging of arbitrary
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length., The fourth-order field correiation function in the far zone is
then formed, revealing a Fourier transform relationship with the source
irradiance.

In Section 3, a technique of symmetrizing the electric field before
detection is develuoed as a way of inferring the phase of the source-
intensity Fourier ¢ransform. With this additional information, the
transfoim can be inverted to form the intensity distribution for sources
of arbitrary symmetry. In the next section, comparisons are made between
snatial intensity interferometry and the phenomenon of laser speckle.
Finally in Section 5, some experiments involving spatial intensity cor-
relati m are described. Included is an investigation into the relation-
ship between the average-value and time-varying speckle patterns.

TR

TR AR PP

Y PRITRRY;

7
v
FToTT! e

P b L By g il

o

et by

11

A 2 A A B 1 N R AR N RN 4t AL




e o TR e v

1. AN INTRODUCTICN TO INTENSITY INTERFEROMETRY
1.1 Intreducticn

Central to the framework of intensity interferometry are two kinds
of relationships, each existing in distinct domains. The first, and the
principal, of these relationships lies in the spatial domain, since we
are here primarily interested in optical imaging by means of intensity
correlations. Specifically, by some manipulation of the far-field inten-
sity distribution of a source, we wish to infer the intensity dis:ri-
bution over the source itself. However, the efficacy of this intent
rests almost totally on the constraints of a second area of relationships,
the temporal domain. It is here that the bandwidth, power, and time
stability of the carrier waves are determined and even the practicality
of this special kind of imaging.

In this chapter, we intend to give a systematic imtroduction to
intensity interferometry. In essence this technique is straightforward.
The fundamental principles are rirealed in the well-known mathematical
techniques of correlation and Fourier transformation. First, we will
establish the basic spatial relationships between source and far field
for both the first- and second-order cases. Next, we will show the
relationship between sccond- and fourth-order field statistics for a
gaussian time variable. Finally, we will describe the work of Hanbury
Brown and Twiss and the extension of their work by Gamo.

1.2 The Huygens-Fresnel Principle

We wish to examine here the relationship between the electric field
on a section of plane normal to the direction of energy transport with
the field in a plane sectisn at some later time. Referring to Figure 1.1,
we call V(£,n) the electric field bounued by the aperture I in the £-n

7 y
£ t

Ak d ik e o b 43

s e P

V(f,‘f]) Rff.*rx y)

M

V%

A b Lt

Ro

Figure 1.1 The Coordinate Axes fo- the Object {£-n)
and Detection (x-y) F .nes
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plane. Upon realizing that each point in the apeiture radiates a spheri-

cal wave to the right, we can directly write the Huygens-Fresnel principle

(Ref. 7, Ch. 8) for paraxial waves for which

o i .+ exp[ikR(E, n;x,y)]
Vix,y;t) —jj V(§,n;t) IAR(E, mix,y) dedn, (1.1)

where k = Zn/A, and i equals the wavelength of the radiation. Equation
(1.1) states that the electric field V(x,y;t) is formed of a superposi-
tion of waves emanating from each point within the aperture, properly

phase-shifted according to the exponentiial term and diluted by the 1/R
expression. Now

~

R(E,mix,y) = (R Z+ (x-£)2+ (y- n)Z]!i (1.2a)

n
—
=
=]

(1.2b)

n
.o
[o]
P Y
[
+
(Rad
—
tad
2|y
(o]
Faal
\—/N
+
ST
.
<
A1,
(o]
=3
[ M
Nt
-

when approximated by the first two terms of the binomial (the Fresnel
approximationj expansion. Using Equation (1.2b) in Equatign (i.l) and

making the far-field (Fraurhofer) approximation [R, >> k(§°+n )max/zl’
we can write

exp[ik(R + (x24-Y2)/2R°)]
V(x,y;t) =

1).RO
» (1.3)

x ff\'(i,n;t}exp[-i Ek- (x£+yn)]d5dn.

(o]

-

Apart from the coerficlents before the integral, Equation (1.3) shows
that the electric fields in an aperture and the far field are related
by a spatial Fourier transform operatior. This property is basic to

the ensuing work involving intensity correlations with quasimonochromatic
light.

1.3 The van Cittert-Zernike Theorem

Although tquation (1.3) holds for radiation of general frequencies,
the relationship it expresses is somewhat academic here from the stand-
point that it describes eiectric-field quantities that zre unmeasurable
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at optical wavelengths. It is this constraint that has prompted many
investigators to couch optical theory ir the form of correlations of
field quantities. The most well known of these correlations is ce :cd
the mutual coherence function, rifq’zg’T)’ where

T
= 13 1 *
r(il,ii’.t) = -]I:i: ﬁ v(il:t‘.'f)v (iz’t)dt’ (1.4a)
-T
* .
V(}_l,t"“[)v (_x_z’t)a (1.4b)

and « is the time delay between the instantaneous product of the elec-
tric fields at the points x, and x_,. A special case of the mutual
coherence function results when “the time delay is set to zero or

r(il’-’-(-z’”x:O = J(-x-l’iz)’ (1°5)
where J(fﬁ’ia) is called the mutual intensity function.

We wish to calculate the mutual intensity in the far field of a

spatizlly incoherent source. Using Equations (1.5), (1.4b), and (1.3),
we write

V(xl,yl;t)v‘(xz,yz;t) = J(X1,¥13%,,Y,) {1.62)
ik 2 2 2 2 ©
o E 3
= — —— J{){/J{ V(E,, r3 0V (6,0 5t)
(AR )
o -
(1.6b)

k
x exp[—i ﬁ; x, & -x,E, 4y - yznz]dildizdnldnz,

wnere the processes of temporal averaging and spatial integration have
been interchanged and the radiation assumed quasimonochromatic

(v

. >> v - v _. ) so that the wavelength dependence can be approxi-
min max nin
mated by the mean wavelength. Sinc

fzthe source is spatially incoherent,
the mutual intensity takes the form

V(Ey,n )V (€, n,5t) = J(E,,n56,,1,), (1.72)
= I(§,n)8(E, - §,048(n - n,). (1.7b)
15
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Physically, Equation (1.7b) implies that the time fluctuations of the
electric fields at two non-identical points in the source plane are com-
pletely uncorrelated; equivalently, the total power measured at a point
in the far field is simply the sum of the squared electric fields from

each differential element of the source, taken with thre proper phase
delay anc artenuetion.

Using Ecuation (1.7b) in Equation (1.6), the mutual intensity col-
lapses to a s:ngle arza integral giving
exp[% X (x

2K
Jx ,yix,,y,) = -
109172272

. o (1.8)
X f_[l(i,n)exp g §k~ [xg - %08 + (v, -)‘2)n]2d£dn.
- c

Although usually presented in 2 normalized fom (Ref. 7, p. 510),
Fquation (1.8) is a statement of the van Cittert- Zexnike theorem which,
aside from the accompanying coefficient, shows that the mutual intensity
in the far fielc¢ £ a spatially incoherent source is givesi by the Fourier
transform of the intensity across that source. This thecrem is basic to
most optical imaging, since lenses effect the inverse transformation of
Equaticn 7..8) to give a scaled distribution of the object irradiance.

8y the .caling property from cne demain to another, intrinsic tc the

Four er transform operation, large detail in the source is given by small
seprrations in the far field and vice versa., Thus imaging with 2 finite
aperture implies a finite limit to the high-frequency detail resoivable
on the source. This justifies the well-known description of ienses as
low-pass filters. Also, since there are many more nairs of paints within
an aperture corresponding to small separations than to Iarge, there is a
built~in redundancy weighted in faver of low-frequency resolution.

Equation (1.8), although a statement of secund-order correlation,
is basic also to fourth-order correlation, as we shali =ee later.

1.4 A Theorem Concerning the Fourth-Order Gaussian Rands Process

we have just seen in Equation (1.7} the way in which a time average
can be uses to impose a condition onr the correlation of an electric-field
pair. No particular assumption was made about the statistics of the
field variables. However, it is well known that classical thermal sources
exhibi? statistical fluctuations that are gsussian in nature, Hodara®
has asserted that lasers with but a few axial modes are, to a geod
approxirmation, gsussian as w2li, However, Troupl3 has argued that gaus-

sian statistics are achieved only in the limit of 2 large mm'.er of
axial mocdes.
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A well-known property of gaussian statisivic: is that ali higher order
moments are representable in terms of the first and second. A relation
given by Middletonl4 reflecting this property gives the expectation value
of the Zmth-order correlat‘on for the zero-mean random variable 25 = x5 - X5
where

m -
E(zlzz...zzm) = E [[Ik E;Ef'], (1.9a)
an1 Jf
pairs
and E(2122°"22m+1) = 0, {(1.9b)

We now use Equation (1.9a) to examine the relation between the fourth-
order and lower-order moments of a complex-valued electric field variable
that is gaussian in the domain in which the averaging takes place. ¥e
therefore write

- * *
E(IIIZ) = E(VIVIVZVZ) (1.10a)
= v u* oy ® Y * % s
\IV1 VZJZ + V1V2 VIV2 + VIV2 vlvz (1.1Cb)

(1.10c)

where the complex conjugation has been used to assure a real expectation
value. The first term of Equation (1.10c) is the produczt of the mean
intensitles at points one and twe, while the last is the mutuzl coherence
function defined by Equation (1.4a) if the overbars are taken as an
average in the time domain and the ergodic hypothesis is assumed. We
now examine the second term in this expression.

The electric field can be represented by the complex analytic signal2
(where a ccastant term has been suppressed) as

v(t) =[ v(w) exp(-iwt)dw, (1.11)

0

where v(w} exists only for positive frequencies. Ilsing Equation (1.11},
the second term of Equation (1.10c) can be expressed

£l
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| V,&W,[0) | =

3 v ow
R < 7
lim ! 31? f ff &'l("i)v"(”z)c’(p{-i(“)l’ uz)t]dmldwzdt s (1.12a)
2 Tow | 2 2
G T 0
i 1,: = %3: “, v, LH)Vz(UZ)SlnC[(Ul4kﬁ)T]dmldUZ! . {1.12p)
3 3 0

c g where in g0ing from Equat.ivn (1.12a) to (1.12b) the order of t.me and
frequency integrations has been reversed, and sinc x = sin x/ x. As the
3 limit of T is taken, the sinc function approaches a delta functior such
THEEE that the integral has value only for tw, = *w,. Since v{w) can exist

3 i only for positive frequencies, the integral is zero.

e 3 Tiius the fourth-order correlation of electric fields (second-order
¥ 3 correlation intensities) given in Equation ({.10a) becomes

5 : —_— e — 2

B LI, =1, 1, +|r,|, (1.13)
i where the iefin‘ng relation of Equation (1.4a) has been used.

3 Equation (1.13), therefore, describes the relationship between the

v intensity and the field correlations for a prucess that is gaussian in
E the time domain. We note that, in general, the field correlation is a
L3 conplex quantity, so that only the relationship between the intensity
N correlation and the modulus of the field correlation is implied. It
; reveals the urderlying principle by which intensity correlations in the
) .3 far field may be used to infer the accompanying field correlations and
E 3 aence, through Equaticn (1.8), to zain knowledge of the intensity dis-
L tribution at the source.

-4
P .

G- 7 1.5 Intensity Interferometry in the Temporal Domain

L As indicated initially in the Preface, Hanbury Brown and Twiss1

¥ were the first to realize the potential of using intensity beats to

; . derive information concerning the irradiance of a distant scurce. First
2N vorking at radio frequencies and then later at optical wavelengths,3
. danbury Brown and Twiss formulated the imaging problem and used the

E results to infer the diameter of the star Sirius. We wish to present a
brief outline of their work which relates to the problem at hand.
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Following Reference 3b, Hanburry Brown and Twiss express the elec-

tric field as a superposition of quasimonochromatic waves cwitied from
a diffeirential area in the form

-

= 2 R(5,%) 1
Vi) = 2: b (8 C°5[“?“£§" - "“z"“g A (i.14)
r=0

where hi(g}d;_is proportional to the population of the rth mode, c is
the vacuum veloclty of light, T is the time of observation, and ¥ (&) is
a random phase that is uniformly distributed between 0 and 2w radians.
This phase is both time and space dependent. The condition of spatiai
incoherence, exp ‘essed earlier in the form of Equation (1.7), was assured
by Hanbury Brown and Twiss by requiring that

LR _ ! ) Y
Xp()xg(87) = 8 &g - &) (1.15) ]
|
Using Equatio: (1.14), the instantaneous intersity is formed, where i
et ®  2e{a, 2, n,.n0 );5
I(x,t) « /ds_d_g_‘ 2 Z | [di AR SRR
T>S s=1 ;
- " (1.16) :
2n(r - s)t _ Zﬂ.{ ) . } . ; ' :
%X coOS [———-—-——T T rR(E,x) - sR(E',x) {xr(g_) xs(g_ )} , i

n;, 1s proportional to the number of quanta per mode, oy, is the detector
quantum efficiency, and e 1s the electronic charge; also, following
Hanbury Brown and Twiss, twn-dimens:iunal spatial integration is indicated
by single integral signs. {1 arriving at Equation (1.16), the form of
Equation (1.14) was squared, giving a sum of two cosine terms, one
involving z sum frequency, the other a difference frequency. The former
term has been dropped, since it corresponds to a very high frequency

term (approximately twice the mean optical frequency). The second term 3
can be visualized in the form of a square sxr symmetrical matrix. The ;
diagonal (r=s) corresponds to a dc term that has alsc been dropped, since 3
che ensuing electronic apparatus has zero dc response. Twice the sum is ;
taken of the off-diagonal terms in the upper half of the matrix.

an s G A 7

KA A A0 G d

Next, to account for the temporal resolution of the apparatus, the

complex freauency response is represented by F(E%i) so that the filtered
current J(x,t) is stitten

o

s
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C - ® Z2e(a,_a,.n, n }1?
Ji(x,t) = 1}5 dgd_c_' 2_; Z dx lr ;s 1r'ls
‘3 r>s s=17
r-s ‘ ~ 5 rR(£,x) -sR(gf,i
< Re [P () esvli| 5 [Tt 5 (1.17)
1
RS B
- gxr(g) -y (& ' [ ',

Invoking the Fresnel approximation {Equation (1.2b)] for the ray paths

R(E,z), Equation (1.17) is used to form tne time-average cross-correlation
function

T

(o]
r . 1
C(£) = lim = f J(x,,t -t ) (x,,0)dt, (1.18)
T~ o
° 0
where :
to = h X, -x), f =x-x', (1.19)

and k is a special kind of vecior wave number defired by Hanbury Brown

and Twiss having dimensions of time/length, Under the assumption of
ergodicity, the average defined by Equation (1.18) is tzken as the equiva-
lent of the ensemble average.

AL 18 6 Y

Y

sttt

when Equation (1.17) is nsed to form the product of Equation (1.18),
a pair of cosine terms result, similar to the step from Equation (l1.14)
to Equation (1.16). The first cosine argument involves a sum of phase
terms, the second a difference. Reflecting on the condition expressed
by Equation (1.15), it becomes apparent that only cosine terms inde-
pendent of the random phases can contribute to the integral erpressed 2
by Equation (1.18). The ccsine coaposed of sum terms therefore drops :
out, Jeaving the latter term with the additional constraint of Equation :
(1.15) forcing an equivalence among pairs of frequency variables, simi- E
lar to the earlier result expressed by Equation (1.7). b

The result of the operation defined by Equation {1.18) is

2 o s
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x! jf dva, (v}e, (v)
0

%,
[a, (v, ©)n, (v, )0, (v,£" 30, (v,E")]* (1.20)

x

X

cos § 2+ (5-5)(5,_-5')}[ £ {r o m e or,0}

0
0

a relationship that can more succinctly be expressed in the fom

TET = IrE.£h 12 Ty, (1.21)
where
Ca ot ' §2n"\? o1 '
dgdg’ 1(OI(E) cos {52 1" - (£-£")
Ir(3,£) ]2 = ——== L2 o (1.22)

f f dgdg' 1(6)1(g)

and C(0) is the correlation at zero spacing of the two intensity detec-
tors. Equation (1.21) is the principal result, revealing a particularly
important relationship. It is shcwn that the process of intensity corre-
lation in the far field with an infinite time average can be formulated
as a product of two distinct terms. The first involves the square of the
Fourier transform of the irradiance distribution across the source. The
second term assumes the role of proportionality constant and relates to
the power of the beat-frequency carrier.

_____ We note that the source spatial information and coefficient term,
C(C), are completely decoupled for the above condition of temporai
averaging. This important result Jeads us tc speculate under what con-
ditions an illuminated rough surface might erjoy a similar description
of decoupled space-time statistics for the case in which short time
averaging takes place. In Secticn 2. this subject will be explored.

Finally, we see that rtquation (1.22) gives the squared modulus cf
the spatial Fourier transform of the source distribution. This means
that, unfortunately, except for certain situations for which the phase
of the transform is known a priori, Equation (1.22) cannot be inverted
to find I(§). A method to circumvent this constraiat is the subject of
the next section.
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1.6 The Tripie Correlator of Gamo

As v have found in the two previous sections, fourth-order field
corrciation yields informatio.. only about the absolute square of the
second-order correlation. Equivalently, only a power-spectral measure-
E ment is made relating to a function that is, in general, complex. Thus
E 3 it _.> umpossible to invert the power spectrum to derive the far-field
3 3 mutual-intensity function and thence the irradiance distribution over a
3 spatially incoherent surface.

T In order to gain information about the phase of the mutual coherence
2 f tunction by the method of intensity correlations, Gamol0 proposed a
R sixth-crder correlation technique. We discuss briefly the principle.

Using Equations (1.9a} and (1.4a), the third-order correlation of inten-
sities becomes

H

- *., 1
E(1,1,1,) E(vlvlvzv;v3v3) (1.232)

T (r

3]

2 2 . 2
12! + !r23§ + i"3ll )

+ ZIFIE{ lP23! ‘razl c0S (3, *+4,.*4,.), (1.23b)

whore I1 = fé = T; = 1, and the terms in ¢

i indicate the phase difference

between points i1 and j. Using the identity

- - o ‘—3 g 2 2.
AT AT a1, = TLI;-T - I(lr12l2+ Ir,, 1%+ Irg 1%, (.20

vhere AIj = Ij - T}, Equation (1.23b) can be used to write

BT LT,0Ey = 24T f i, ] [Tyl cos(e ,+4,,+4, 3. (1.25)

It can be seen from Equation (1.25) that the argument of the cosine
function involves the sums ¢ phase differences between the three sam-
pling points. Gamo used the argument of the cosine to form a difference
equation through which he expressed the phase of the two-point mutual
coherence function. An ambiguity arises, however, in the sign of the
phase because of the sign indeterminacy of the cosine argument. In
effect, two images are derived, one the reflection through the origin

of the other, and supplementary information must be used to resolve the
proper reconstruction,

g e W R R e g ¥ g g
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1.7 Summary

We have seen that, using the basic Huygens-Fresnel imaging equation,
the fundamental observable of op.ical radiation, the intensity, can be
used by means of the van Cittert - Zernike equation, to infer the distri-
bution of intensity over a spatially incoherent source. Further, by
means of the moment reduction formula of gaussian statistics, we have
shown how higher-order moments can be used to infer certain properties
of the second moment, the mutual coherence function. This properiy,;
for the fourth-order moment, is inherent to the Hanbury Jrown - Twiss
formulation. Finally, we have secn the general way in which Gamo used
the technique of sixth-order field correlation to derive the phase of
the second-order field correlation.

This introduction will serve as a basis upon which we will extend
the principle of intensity interferometry to detection and averaging in
the spatial domain.

2. INTERSITY INTERFEROMETRY IN THE SPATIAL DOMAIN
2.1 Introductigg

In this section, we will examine the problem of using intensity
measurements in the far field to infer the irradiance distribution over
a rough surface. However, rather than examining the two-point, time-
averaged correlation of intensities, the far-field intznsity pattern
will be recorded for one time-resolution unit of the detector. The
spatial signal will then be autocorrelated and related to the
irradiance.

We start with a straightforward generalization of a method given
recently by Marchand and Wolf.!l Our notation is similar and we follow
closely their development through their Equation (35).

2.2 The Intermediate-Average Mutual Coherence Function

For a stationary scalar wave field, the mutual coherence function
for the correlation of two space-time points is often written

T ]
=3 * :
Px,x,,TT) =5 | Vol ee OVilx,,t)dt, (2.1) 3
-T
where x = x, i+ y J, and the limits for the time integration are
allowed te approacg infinity. For this case, however, we wish to keep

the parameter T finite and by the subscripts indicate that we assume a
knowledge of Vy(x,,t+ 1) and V (x ,t) only over the finite sample length

2T. We wish to call r(iq’EQfUT) fhe intermediate-average mutual

preta g o e s
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conerence function and carefully stress that, for arbitrary T or shift

of origin, it may bear little resemblance to the mutual coherence func-
tion defined by the ensemtle average.

Following Reference 11, we represent V(x,t) as the temporal Four1er

transform of the complex analytic signal (where a constant term (2m)-!
is suppressed)

VT(.’S't) f v,r(g_c_,u) exp{~iut)dw, for 0 < |t| < T (2.2a)

0

It

0 otherwise, (2.2b)

and T
vT(g,w) = J/. VT(E’t) exp(iwt)dt. (2.2¢)
~T
Substituting Ejuation {(2.2a) intco Equation (2.1), interchanging the

order of integration, and time-averaging and performing the time inte-
gration, we get

r(x ./;/. W (xl,xz, 1@} exp(- ~iw r)s1nc[(m - ”2)T]d“1d”z’
where (2.3)
sinc x = §3§—£—, (2.4)

and the cross-spectral density function

Ho (X 5%, 0y 50,) 5 V()0 300 (%p,0,) (2.5)

and the subscript T here and later impliss a function based on the elec-
tric field statistics only for the particular sample 2T in length (here-
after called the detector resolution time) about the origin. The sinc
function of Equation (2.3) assumes the role of a low-pass filter. If T
is very small, the two frequency variables of Equation (2.3) are essen-
tially independent and all cress terms are represented in the product of
Equation (2.5). These cross terms form a high-frequency spectral con-
tent. However, as T tends to infinity, the sinc function assumes the
role of a delta function, constraining correiation to occur only between
identical frequencies in the transform product and forcing the integral
to a one-dimensional form. In the limit of large T, the filtered spec-
trum of Equation (2.5) becomes the mean square value (dcj of each tem-
poral frequency component in the signal.
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Foilowing Marchand and Wolf11 and the earlier lead of Walther,lS
YT(i,w) is represented in the form of an angular (spatial) spectrum of
plane waves in Cartesian coordinates where

vp(x,w) =ff a;(p,q,w) exp[ik(px + qy +mz)]dpdq, (2.6)
m=(1-p?-q¥)% ifp2+q2 <1 (2.7a)
=i(p2+q2 - 1% if p2 4+ q2 51, (2.7b)
and !
k = wc, (2.8)

where ¢ is the vacuum velocity of light.
vy(x,w) is formed by a superposition of hemogeneous spatial waves propa-
gating in the half space z > 0 for the critericn 2xpressed by Equation

(2.72) and a set of evanescent waves propagating parallel tc the plane
z = 0 for the case described by Equation (2.7b}.

Equation (2.6) indicates that

Expressirng Equation (2.5) in the form of the
plane waves defined by Equation (2.6}, we get

Wp (X)X, ,0),0,) = ffff Ar(Py,9)5P,,9,5u,,0,)

x exp[ikl(plx1 Y qy, v mz)] (2.9)

angular spectrum of

X exp[—ikz(pzx2 +q,y, + mzzz)]dpldqxdpquz’

where

AT(PL'Q);pz’qz;“x’”z)

aT(Pl,qi;wl)aT(pz,q;;mz). (2.10)

Using Equation (2.9), therefore, the intermediate-average mutual
coherence function of Equation {2.3) can be written

25
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Mz X, 0T) =ff exp(-iw 1) sincl@; - w)Tldw du,
9

x J{~./C!r Ar(p,.4:5P,,9,50,,u,)

£2.11)
x explik {p\x, + g,y +mz]]

x exp[-ik,(p,x,+a,y, +m,z,)}dF ,dq,dp.dq,.

if T is allewed to approach infinity, the limiting form of the sinc fumc-
tion forces w;, = w,, and the Zatermediate-average mutual coherence
function clearly reduces to the form of Equation (2.13) of Reference 11
by the elim.natiocn of one of the time-frequency integrals,

2.3 The Angular Correlation Function and Other Spatial Correlation

Functions

The cross-spectral density function W(x ,52;w1,w2) is nuw expressed
as a four-dimensional spatial Fourier integrai as

Wr (X 5Y) 02) 5%, 57,525 50)50,) =J/;[]:[~ We(£,.8,52,:8,,8,52, 50, ,0,)

X exp[i(flx1 vgy, v ot gzyz}]dfldgldfzdgz. (2.12)
Equation (2.9) with Equation (2.12) therefore impliies

) . 2k 2% 20 o ey e )
Ap(PysGyiPaaGyimyawy) = kTR TP K 252 5okop sk e,

3250 50,)
x exp[~i(kmz - Xmz,)], {2.13)
and specifically if z; = z, = 7, Equation (2.13) becomes
. -1 21 2% n s o0 . .
A0PysQ 3P,y w0y 0y = K TR ha (k)P LK Q305K Py, oK 005w 50,)

(2.14)
Equation (2.14) indicates that the angular correlation functicn
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AT(pl’ql;pz'qz;wz’“z) and the four-dimensional spatial Fourier transform

of the cross-spectral density function are related at the pline z = 0 if
£, = ki, g, = k}ql, £, = ~k2p2, and g, = -k,q,.

Further, the spatial transform of the time spectrum of the field
can be represented by

Vo (X,Y,2;w) =J{}; JT(f.g;z;w) exp[i(fx + gy)]dfdg. (2-15)
Comparison of Equations (2.15) and (2.6) inaicates
aT(p,q;w) = R‘GT(kp,kq,z,m) exp(-ikmz). (2.16)
Using rquation (2.16) in Equation (2.1) gives
AplP) 93Py, 50y 50,) = RS ICS NI ENTS
x Q;(kzpz,kzqz,zz;wz) (2.17)
x exp[-i(kymz, - kzmzzz)]‘
The intermediate-average s_atial correlation function is defined

~ . “d
vv(“l pl lkl ql ’Zl ;wl )V.: (.kzpz lkz q‘? 922 ;wz)

* , “ . o« e . ¢
VT(klpl,qul,zl,kzpz,kzqz,.z,ml,mz) {2.18a)

[§]

VU Py ok 4 305K, Py uKy 4y 50 5wy 0y

x

exp[i(k;m 2z, - k,m,2,)], (2.18b)

where the product form of Equation (2.18b) is implied by the inde-
pendence of the left side of Equation (2.17) on 2z, and z,. If we set
2, = z, = 0, Equations (2.17) and (2.18) imply

’ . . - 2 2 . . . .
ApiPy,9)3Pp595w 50y ) = Ky Ky Ve (kypy oKy ay505K,p,, k00,5050, ,0,) . (2.19)
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Finally, using Equations (2.14) and (2.19), we find

.' VT(flag:;O;fzngz;o;w})wz) = %T(f1s81;0;'f2:’82;0;w1;m2)~ (2'20) ;

3 Thus the relationships between the angular ccrrelation function and the f
. - § cross-spectral density function are established by Equation (2.14) and i
¢ the angular correlation function and the spatial frequency correlation :
RS function by Eguation {2.19) for the case of intermediate time averaging. :

2.4 The Intermediate-Average Correlation Function in the Far Field

;‘. K Now the form of the cross- spgctral dens1ty function is examined ixn
. the far fieid. Defining ry = (xp° + y, 2)5, we seek the asymptotic

forms for the case of x, and X, tendlng to infinity in the paths indicated
by the direction cosines -

E 3 X, Y, 2 X, ¥

2,2, = ad —, —, —-

T, T T 1 Ty T

- Rewriting Equation (2.9) using the definition of Equation (2.10), we have

WR(X 0% 50, 0,) ff ap(py,qy50) 2xpliky{p)x; +q;y, +m 2 )dp da,

ff a,;(pz,qz;wz) exp[-ik, (p,X, + G,¥, * m,2,}]dp,dq,. (2.21)

As k1,

integrals is given by Miyamoto and holf

+ o and P + =, the asymptotic form of the two-dimensional

T 2 X, Yy X, Y,

s ... 3 (21‘:) 1 1 2 2

- 7 w . - o+ ] —— s.-. ——

D Wo(x ) X,50,,0,) kK, cos 8, cos §, A, TS rz'wl’”

= x , (2.22)

where

.23)

— 3 cos 8, Z cos 8 :
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and use of Equation (2.10) has been made. Finally, if Equation (2.22)

is substituted into Equation (2.3), we get for the intermediate-average
mutt - coherence function

r(il,iz,r,r) = J()r exp(-iulr) sinc[@ﬁ- wz)T]dwldwz
0

2 exp[i(k,r, -k, r_ )]
A x Eigu cos e1 cos 62 it 22 (2.28)
2 172 nr,
' . 1 Yy X Y, o w \
3 Ty Ty TS TS > .
3 Ty Ty Ty Ty 1Y
3
3 In addition, because of the relationship given earlier relating the
angular correlation function to the cross-spectral density and the spatial-
frequency functions [Equations (2.14) and (2.19)], Equation (2.22) can
] be written in the following forms:
3 . exp[i(k,r, -k.r )]
3 . 42 ! 117 272
; "f(fd'fe’”l’”z) 47" cos 81 cos 62 klkz T,
‘ . /k.x, K.y kx.  ky
3 50 WS U U 22 272, .
‘ x WT( o % T, T, 0; wl,w2> (2.25a)
exp[i(k,r, -k.r. )]
= 4n2 cos 6, cos 3, klkz 11 22
2 T, T
172
« vk 2Lk 2L 0; k, 22k, 22 0 2.25b :
T\l r,” 1 ;T' r T2 ;;. 2 ;;, ; w‘,w2>- (2.25b) :

Fquations (2.25a) and (2.25b) can also be used in Equation (2.3) to pro-
vide alternate forms of Equation (2.24). Equations (2.24) and (2.25)

form the medified version of the forms given in Reference 11, Equations :
(2.33) through (2.35)}. Using these resuits, we are now in a position to 3
form the self-intensity function in the far field. k

moudith

2.5 The Self-Intensity Function in the Far Field

We now examine the form of the self-intensity in the far field by

letting points X, =X, = x and then letting the time delay, 7, be

s s ikt

29




e
¢

P T R

W TP R SR

LA

L

R P T AT LT

TR S RV P 1T

zero. Under these conditions, the mutual cohersnce function reduces to

the self-intensity (Reference 7, pp. 507-509) and, wsing Equation (2.25b}
in Equation (2.3) and the definition given In Equation {2.18a}, we have

) vow,  expl[if(k, - k,ir}
1(x,T) = 4n° cos‘eﬂduldwz 12 L7
¢

— sinc{(ml- wz}T]

¢

il 3ok L0 w) Wik, 5ok L0 wy), (2.26)

where, as indicated earlier, the sinc function acts to suppress temporal
frequencies in the cross spectrum higher than ~1/(2T) Hz. W#e now utilize

the linear transformation of the time frequency variables (fcr which the
jacobian is unity) defined by

wl +L.!z

Wy -w, Ep and 5

ue
Q
.

(2.27)
kWriting the w variables in terms of these center-of-mass coordinates,

w = 20 Z+ ) and w, = 20 2- 0 , (2.28)

which, when substituted into Equation (2.26), gives

-\ 2 © *
I(x,T) = (12:—1‘) cos?9 f do ¢? f sinc (pT)exp(ior/c)dp
0=0 p=aw
o (920/2 x g*0/2 y. . 2.29
x VT( c r’ c r’ 0; o+ p/z) ¢ )

cefo -0/2 x o0-0/2 y .
X VT( c r’ c £ 0 a-p/2),

where the depuiidence of the amplitude on the difference-frequency

cgordinate, ¢, has been dropped, since for quasimonochromatic radiation
0? >> 1p2/4].

Now, using the defining transform relation of Equation (2.15), we
write the spatial correlation function at the source (z=0) where
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oz ey )

G (L2 X 92012 Y o, guoyy) dp (SRR E, 22/ 2, 0 - 0/2)

c r’ ¢ r°’ T c r’ ¢ r'

1 “ . A, ot ol o
B (,’“)2 4/:///‘\1‘(51,"\1,0,0*0/2) IT(EZ’ -2:000 0/2) (2.30)

g+ p/2 . . fe-0/2" X
exp{-l ( S CD/ )(e’,1 -§+ ny if)] exp[l (-——E—) (52 T + n, %—)} dE,_dEzdnldnz.

Now the intermcdiate-average spatial-correlation function,

*
vel§,0ny; 05 04 p/2) vi(E;,ny 05 0-0/2),

when considered with the filtering action of the sinc function of
Equation (2.29) will have an effective contribution only for the low-

frequency components formed by the difference-frequency terms v1/(2T) Hz
or less,

in addition, we assume the mode population to be a slowly varying
function of o, since ¢ >> p/2. This approximation can be couched mathe-
matically by expressing the mode population in a Taylor-series expansion
about some center frequency o. and taking only the first (constant) term.

This gives the idealized mode population the shape of a rectangle func-
tion. Thus we write

ve(€,,n,,0;0+0/2) V(€ ,n,,0;0-
(vg(&ysm) 00504 0/2) vi(€y,ny,0;0-0/2)], freq.

= A(g),n)30+0/2) A(E,,ny;0-0/2) exp[i¢ (£, - £5,n) - ny50)]  (2.31a)

"

A(ii'O) A(_QZ,U) H(o) cxp[ié(f;_l ~£2;p)], (2.31b)
where
1 for A(g; o2¢p/2) # 0
H(p) =
0 otherwise.
tquation (2.31) acknowledges the loss of the optical-frequency phase,
while maintaining the phase of the intensity envelope formed by temporal

beat modes. The degree to which the phase of this envelope is detected
depends on the bandwidth of the source and the detector resolution, 2T.
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Essentially, these arguments were made by Hanbury 3rown and Twiss
(Reference 3b, p. 311}, except for the defin’ng ol the H function. Its
introduction is brought about by the descriptlon of narrow-band sources
by terms in A(§,0). Por a thermal source of relatively large bandwidth,
the maximum difference p will extend far beyond the temporal-frequency
response of the system [here reflected in the sinc term of Equation (2.24)]
and be continuous as well. But for a laser source exhibiting a series of
axial modes, the complete difference-frequency dcmz2inm might lie entirely
wvithin the system response but be piece-wise continuous in its extent.

Relative to the representation cf the intermediate-average by the
form of Equation (2.31), we wish to reiterate a statement mude following
Equation (2.1) that the intermediate-averaging process may bear little
resemblance to the infinite time average, even so far as the detail of
the amplitude terms, A(§,0). This situation would be serious if our
intent were to infer, for example, the time-frequency statistics of the
source. t in the present concept, we desire only to infer the spatial
properties of the source. If we consider a multi-axial-mode laser beam
scattered from a spatially rough surface, the lack of correspondence
between the two averages is unimportant, for all such mode history is
integrat~d out; all areas of the scatterer see the same mode characteris-
tics. Aay mode fluctuation would be seen simply as a variation in
total received power from one sample to the next. Here, we simply
require for one detector-resolution time over a spatial domain that the
process of Equation (2.31) maintain the random phase term ¢(_§_l -~2,o)
(due either to the temporal mode structure of the source or to the scat-
tering surface roughness) with sufficient mode population [reflected in
the amplitude terms A(%,0)] such that quantum noise in both the carrier
wave and the detector can be ignored.

Using the results of Equation (2.31) in Equation (2.29) and taking
8 << 1, we write

2 ©
I(P.T) = (—Cl—r-)f ¢? do fdo exp(ior/c) sinc{cT)H(p)
0 -®
x ffff A(_g_l,o) A(éz,c) exp[i¢>(§1 -5_2;0)] (2.32)
4 . ~p/2 "
X exp[—i (3-—&9—/-2-) <€,1 % * o0 %)] exp{l (9—?‘71—) (52 -:7 + 0, %)]dz,ldizdnldnz.

We now have the sel“-intensity in the far field expressed as a double
integral over sum- and difference-frequency components as well as two,
two-dimensional spatial Fourier transforms over the source.
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Following Goodman,ll we argue that the received field at any point
in the far zone consists of a sum of random-amplitude, random-phase,
complex phasors contributed by the elementary scatterers. If the size
of the scattering area is large enough to include many point scatterers
(or there are enough elementary coherence areas composing the source),
the Central Limit Theorem may be used to conclude that the electric

3 field in the detection plane is a gaussian random process in a spatial
] sense.

P

AT T

Using the form of Equation (2.32) and its property of spatial gaus-

sian statistics, we are ready to form the fourth-order correlation func-
tion in the far zone.

2.6 Fourth-Order Field Correlation in the Far Zone

; In Section 1.4, a theorem of fourth-order gaussian processes was
i derived. This relation is implicit to the work of Hanbury Brown and
3 Twiss, discussed in Section 1.5, but was never explicitly utilized. How-

i ever, Wolf> later discussed this theorem as a plausibility argument for
E their work.

To form the fourth-order correlatiuvn function, we can prcceed by
writing the two-point product of intensities in the far field using
Equation (2.16) in a manner similar to that of Hanbury Brown and Twiss.
However, to develop an approach adaptable to arbitrary orders of corre-
lations, as well as to allow consideration of scattering surfaces with
2 arbitrary roughness, we start by writing the fourth-order gaussian
3 theorem (here for the electric-field spatial variable), where

. 2
<I(x,)1(x,)7 = <I(x))> <I(x,)> + [V IV E)? T, (2.33)

and where the angle brackets <> indicate a spatial average, not the more
usual time average. We can conclude from Equation (2.33) that the
second-order intensity correlation is composed of two terms, of which
one forms the square of the second-order field correlation; the othex

is a spatial dc term, of no value here. Hanbury Brown and Twiss elimi-
nated a similar temporal term by means of a dc block in their electronic
apparatus. Part of the temporal dc signal contribution comes from terms
in 0 = 0. The two-point product of intensities in the far-field (for

p = 0) remains a constant in the time domain and is, therefore, of no
utility in the Hanbury Brown - Twiss experiment. This two-point product
does vary, however, as the spatial center-of-mass coordinzte of the two
points is translated over the detection plane. Thus, terms in o = 0
must be evaluated for the case of averaging in the spatial domain.

Using the moment reduction properties of Equation (2.33) along with
Equation (2.32) and the more general form of the spatial-frequency corre-
lation function expressed by Equation (2.25b), we can write

g L Sl
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2
<T(x,TIH(X,,T)> = <P (x,,%,50;T) >,

(2.342)
= 1 “/‘ g? dc/ do sinc(pT)H(p)} exp(inr/c)
(cr) | 0 / o
x ffff‘-“éwwﬁizﬂ) exp[is(g, - £,:0)]> (2.34b)
2

o e[ (S5 (g o x)] enels (35 (g, o, oy,

Next, we make the following transformation to spatial center-of-
mass coordinates where

1
£=5 -85, ad g=3(§ +&,). (2.39)

Introducing these into Equation (2.34), following some algebra, we find
(suppressing constant terms),

<I(x,,T)I(x,,T)> = ( I)L, ’f o? do f sinc(pT)H(p)explipr/c)dp
cY
O - ;|

* ffff‘“&*‘/2'°W&-z/z,o)exp[iui,p)) >

(2.36a)
x exp%d (0 ";;.’..3) [(E* f_/z) . %]s
/2 i2

. -0

x expzl (9 o -)_ L(g- £/2) - iz]f dfdg
]

- ’(c—i)" f w? du f sinc (oT)H(s)do

0 - -
> /f 1(E,w exp[-i -i- (x,-x,) '5] de (2.36b)

2

-t

x /f 9 exp[-i = (x4 x)) ’.f.] df
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1Tk 2 -7k ] 2
l I[? (3‘.1‘2‘.2)]! lC [5; (}_1*’}_2)” (2.36¢)

In going from Equation (2.36a) to Equation (2.36b), we have dropped the
Fouvrier-transform terms in the difference frequency variable p, since
they 2re clearly negligible in the far field. The ensemble average has
been expressed as a groduct of two terms: C(f) is a normalized phase
correlation functionl? describing the coherence interval over a rough
surface, and I(§,w) is the intensity in the global-spatial variable. We
have made the reasonable assumption that the field arplitude is constant
within a given coherence area of the source; specifically, for f suffi-
ciently small that C(f) # 0, A(g + £/2,0) = A(g - £/2,0) = A(g,0) = A(§,0).
This final approximation is made under the assumption that the coherence
area of the source is small relative to the total source area, an asser-
tion already made in an earlier argument for gaussian statistics. In

Equation {2.36¢}, the circumflex indicates a two-dimensional spatial-
Fourier transform.

In order to describe a spatially incoherent surface, C{f) is usually
allowed to assume the role of a delta function.l? Thus, Equation (2.36)
is reduced tu a sirgle integral in two space. Given this form, we see
from Equacion (2.36) that the spatial-averaged, two-point intensity cor-
relation in the far field is proportional to the mod-lus of the spatial
Fourier trarsform across a spatially rough surface, assuming a suffi-
ciently short exposure time 2T. However, only for the case that the
intensity distribution over the source has even symmetry can the phase
of the spatial transform be inferred and used to invert uniquely Equation
(2.36) to derive the intensity distribution on the source, I(g,uw).

Finally, the form of Equation (2.36c) shows explicitly that the
intensity autocorrelation function in the far field is proportional to
the product of two spatial power spectra. The spatiai power spectrunm

3 k |2 . . . . - k 2 - .
II[;_- (x, -52)], is merltiplied by IC[TI— (x, +§_2)] |, the spatial power
spectrum of the correlation function describing the surface roughness.
If the surface is sufficiently rough that this function approximates a

delta function, tlen the transform is essentially constant, and all spa-
tial frequencies o. the source can be inferred. However, as tn. ~nrre-

. . . - 2 .
lation interval increases, 'C[%%'(Ei"iz)]l acts to band limi. the

detectable spatial speigrum of the source. This effect is discussed,

for example, by Kinsly ® for the case of microdensitometer imaging with
partially coherent ligh*

We also wish to point out that the transform of the intensity dis-
tribution over the sourc.:, I[%-{§J -EQ)], is a function of the difference

coordinates in the receiws. space. 'owever, the transform of the phase
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correlation function, C[%%-(§J-+§2)], is a function of the average

(global) coordinates in the receiver space, This term cannot strictly
come out of the spatlal-averaging process of Equation (2.36), since the
averaging is done in the global sense. In effect, the resolving capacity
of a measurement in the receiver plane depends on tire position in the_
plane. However, if the coherence area in the source plane 1is small, C

is nearly constant over a large range of its argument and, hence, is
generally insensitive to changes in the global space variable at the
receiver around the origin. As indicated by Goodman,17 this factor is
generally treated as a constant over the receiving aperture,

2.7 An Illustrative Experiment

To illustrate the atove ideas, we suggest a simple experiment
embodying these mathematical ideas. A helium-neon laser in single-axial-
mode configuration is used to transilluminate a symmetrical source
(Figure 2.1). The source has a random-phase character to obtain spatiai
incoherence. The far-zone intensity pattern is recorded by film, using
an exposure time less than the reciprocal of the source bandwidth, This
exposure ensures that the spatial pattern is not washed out.

—

- 0
- V

_—

- <

0 TE

Figure 2.1 A symmetrical object (0) is illuminated with collimated
Tight from a single-axial-mode laser. Ground glass is introduced
at plane 0 to achieve spatial incoherence. The far-field intensity

pattern is recorded by film at plane F. The lens focai length is
indicated by f.

Next the film is develcped so that it is linear in intensity and is
used to make two identical positive transparencies. The positives are
then placed in a coliimated beam (Figure 2.2) to form the correlated
intensity over an averaging area. The signal transmitted by the trans-

parency pair is optically Fourier-transformed, a dc block is inserted
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Figure 2.2 A pair of transparencies, T, and T,, are made from film
record in plane F of Figure 2.1. Intensity-autocorrelation function
is measured by power meter for spatial lag ff = X, - X,. DC block is
inserted between lenses at arrow to remove unwanted signal.

to remove the unwanted average term, and the total remaining irradiance
is measured. This signal represenis the mathematical expression given
by Equation (2.36) for the transparency spatial lag, gf = Xj) -Xp. Since
the source is known, a priori, to be symmetrical, the transform of the
source intensity is pure real. The square root of the correlation signal
(see Section 3.4 for details of this operation) is proportional to the
spectrum, which is then known as a function of spatia) lag. Finaily,
this two-dimensional signal is Fourier-transformed by machine to give
the scaled source irradiance.

2.8 Summary and Conclusions

Having developed an intermediate-average, mutual-coherence function
as a starting point, we have derived an expression for the two-point
intensity correlation in the far field, independent of time-averaging
except for the temporal resolution of the detector. This result is valid
for narrow-band, high-intensity light scattered from a spatially rough
surface ¢ 7 airbitrary coherence area.

There are a number of special benefits from detecting images by
the technique of intensity correlation. (1) The method is relatively
insensitive to tune effects of atmospheric scintillation.” (2) Because
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the signal is detected in the spatial-transform domain, high-frequency
detail about the scattering surface translates to large spatial lags in
the far field. This result cculd be particularly important at frequen-
cies where detector resolution is not well developed. (3) A special
advantage to intensity interferometry in the spatial domain is the utili-
zation of gaussian statistics in the spatial (not temporal) sense. By
this method, sources with non-gaussian time statistics (such as single-
axial-mode lasers) can be utilized. (4) Still another advantage of

spatial detection is that images of moving surfaces can be formed using
brief exposures.

We have therefore shown that, given a symmetrical, spatially inco-
herent source illuminated by high-intensity light, the far-zone intensity
pattern can be used to form the optical image of the source if the signal
is recorded with sufficiently short time resolution.

3. SPATIAL INTENSITY INTERFEROMETRY WITH
SOURCES OF ARBITRARY SYMMETRY

3.1 Introduction

In Section 2, we showed that, given a symmetrical, spatially inco-
herent source illuminated by high-intensity light, the far-zone intensity
pattern can be used to form the optical image of the source if the signal
is recorded with sufficiently short time resolution. The primary result
of this analysis is that the far-field intensity correlation function is
proportional to the square of the spatial Fourier transform of the source
intensity distribution. Sinre, in general, a source exhibits an inten-
sity profile of arbitrary symmetry, its spatial Fourier transform is com-
plex. The measurement, however, gives information only about the spatial
power spectrum (absolute squarc of the spatial Fourier transform) and,
therefore, only the modulus of the Fourier transform can be inferred.

The inversion of the spatial transform to derive the source intensity is
thus impossible since the necessary phase information has been lost.

In the experiments of Hanbury Brown and Twiss, the loss of phase is
not a serinus limitation since their objective is simpiy the measurement
of star diameters. If a circular disk is used as a model for a star, the
object is known, a priori, to be symmetrical. Thus the spatial transform
of the (real) intensity is pure real. For this situaticon, the phase of
the transform is zero or 7 for all spatial wave numbers, and the square
root of the power spectrum can be taken (with a sign ambiguity to be dis-
cussed below) to derive the spatial transform itself,

In the application of intensity-interferometric techniques to ter-
restrial imaging systems, though, the loss of phase is a serious limi-

tation to the method. A number of authorslg’zo’21 have addressed

themselves to the problem of phase recovery. Wolf£1® pointed out that
the complex transform of intensity has apalytical properties that can
be used in certain situations to infer the phase from measurements of
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the modulus alone, Gamom’22 has suggested a triple-intensity correlation
scheme by which the phase can be inferred. However, there is an ambiguity
in the sign of the phase angle, and twc intensity profiles are derived, -

e ; one the symmetrical inverse of the other, and supplementary information .
E must be gathered to infer the proper-handed image. Mehta23 has proposed 23
E. 3 another scheme in which a reference beam of an exactly known complex fi
E degree of coherence is superimposed on the signal beam, 2

We suggest here s simple technique which, when used with spatial
detection, gives both the amplitude and phase of the transform. This
method utilizes preprocessing of the electric field before detsction teo E -
exploit a symmetry property of Fcurier transform theory.

5’,7; 3.2 A Symmetry Property

We start by reviewing the well-known progerty that a function f{x)
can be represented by a sum of two functions, 4 one of which is the even
(symmetrical) part of f(x), and the other the odd. The even [E(x)] and
odd [0(x)] parts of £(x) can be found simply by the formulas

E{x}

2 ) + £(-x)] (3.1a)
ard

E 0(x)

%_- (£(x) - £(-x)]. (3.1b)

If, in addition, we know that f(x) is pure real, then the Fourier trans-
form will be hermitian; that is, the transform of the even part of f(x),
E, will be pure real, while the transform of the odd part will be pure
imaginary.2

By the spatial-intensity method noted, the modulus of the Fourier e
transform ¢f the source intensity can be derived. Using the above sym- 2
metTy properties, we preprocess the electric field before detection and E
E autocorrelation so that the source is effectively syvmmetrized in its
. 3 intensity profile. Since its transform is pure real, the power spectrum
. can be used to compute the specirum of the even part of the source irradi-

- ance. The Fourier spectrum of the even part of the source intensity is,
however, the real part of the transform of the unpreprocessed signal.
Thus, if the modulus and the real part of the transform for each spatial
wave number are compared, the phase of the transform can be inferred to
within a sign and used to compute the source intensity. The removal of
the sign ambiguity will be discussed below.

3.3 Mathematical Model

We start by writing a symmetrized field in the far zone of the
source () plane, where

7 = Y e V(-x .
VE(xgd 2 V(X)) » V(-x,). (3.2)
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Writing the correlation of I' (x;) and T (x ), where I' (xi) EAY (xi)V (54),

and using the theorem of gaussian statistics [Equation (1.13)], we have
2 .
(e )T (x,)> = (Vg (x))VE(x,)> | (3.3a)

= VGV (R,) * VO VI (x,) + VE-x VT (x,) + V(X VT (x,)51%,

(3.3b)

where constant terms here and in later expressions have been suppressed.
Ncw the form of Equation (2.34b) is used to express the intensity corre-
lation to get

<I'(£1;T}I'(§Q;T)> = i Jf c2do Jf sinc{pT)H(p) exp(ipr/c)dp
U]

fjflr 3 :A(EI,C)A(E_Z,G) exp[i¢(§_1 -52;0)].\ ‘

+ <A(E),0)A(-E,,0) explio(E, + £ ;0)]>

REEE'7)

+ <A{-£,,0)A(E,,0) exp{is(-E, - £ ;0)]°> (3.4)

+ <A(-£,,9)7 (-§,,0) eXP[i¢(-§1+£2;0)]> $

x exp[—i (%ﬁﬁ)(gl 5_1)] exp[i ( ’°/2 (5 lds dg, l

We can see now that the form of the intensity correlation in the far
field is proportional to the square of the spatial Fourier transform of
fcor terms. The nature of these terms can be better understcod by
referring to Figure 3.la. We show the coordinate axes for the source (§)
plane. Two points §, and &, and their symmetrical pair are represented.
The circle illustrates the coherence area characterizing the surface
roughness. As discussed in Section 2, the first average of Equation (3.4}
is zero unless points £, = £, sach that they can be enclosed by the
perimeter of the coherence area. If this criterion is satisfied for the
first average, it is also met for the last., Simi.arly, the cross pro-
ducis of Equation (3.4) are zero unless :54 = :52.
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Figure 3.1 Coordinate axes in the plane of the source. (a) Points
g, and g, and their symmetrical pair are shown; center-of-mass vectors
are shown, where g is the mean of positions g, and g, and f is the
difference. For the coherence area (CA) small, g = £y = &2 = &, and
f = 0. (b) Source-plane coordinates for £, = -E,. Here the center-
of-mass vectors indicate g = 0 and f/2 = ¢ =~ -¢,.

We also wish to note that the spatial average expressed by the
angle brackets on the left-hand side of Equation (3.4) can be assumed
to approach the ensemble average as the aria of spatial correlation in
the detector plane grows large with respect to the correlation interval
in the same plane. The nature of this correlation function is such that
information about the individual intensity products [I'(§i;T)I'(5j;T)]
will be averaged over the active correlation area. To understand this
average more fully, we define center-of-mass coordinates in the receiver
plane where

g' = ——2—‘3 and £'= x, - x,. (3.5)

Thus the intensity correlation in the far zone can be expressed func-
tionally as

<d'(x3MIx,;T)> = <IN ¢ £/2MIE" - £/ (3.6)

But for a particulér spatial correlation lag, the difference between
receiver points. f , will remain constant while the center of mass of
the peints, &', will vary. Depending on the domain over which gf is
varied, terms dependeat on this global variable should disappear leaving
only functions of the difference coordinate.

We now examine the first and last terms (Ty,,) of Equation (3.4).
If we change the position variables over the source, £ and §2, to
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center-of-mass coordinates, g and f, in the manner of Equation (3.5},
: we get for these terms

o I e 220 86 - 2.0 entivo>

)

<A(-g - £/2,¢0) A(-g + £/2,0) exp{i¢(-£)]>} (3.7)

-3
]

+

T P

n

exp[-i ;oc_ (g+1/2) '§1] exp(i r_oc- (g-£/2) ‘52]dg_d_f_.

As discuzs»l in Section 2, the form of Equation (3.7) implies that the
amplicude a.c phase of the fields at the source can be expressed in
product form. The character of the spatial incoherence is determined

by the exponential terms within the angle brackets that form the phase
correlation function over the source. Since we assume a small c..erence
area relative tc the source dimensions, here in Equation (3.7), f is
cnall such that A(g + £/2,0) = A(g - £/2,0) = A(g,0}. Figure 3.l1a illus-
1 trates the center-of-mass vectors. For terms T, , to have value, f nust
3 be small so that |g, - £,]| is less than the diaméter of the source

3 coherence area. We have also dropped the Fourier transform terms in the

temporal difference frequency variable, p. With these approximations,
the first bracketed expression can be written

i N et

s le b

+

% <A(g + £/2,0) A(g - £/2,0) exp[i¢(f}]>

<[A(g,0)1%> <exp[i¢(£)]> (3.8a)

I(g,w) C(£), (3.8b)

where the center-of-mass temporal frequency, o, has been changed in

Equation (3.8b) to w. With a similar development of the second bracketed
expression, Equation {3.7) can be written

-3
u

14 f][l(g_) + I(-g)] CXP{-i fr (g - (5_1-12)]}dg_

x

ff C(f) exp{—i éi/z . (i, +£2)}df_, (3.9a)

~
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Here k is the wave number of the light, and we have used the evénncss of E’
C(f) to separate the two integrals., The circumflexes in Equation (3.9b) 2
indicate a spatial Fourier transform, and Ig = I(8) + 1(-§), a symmetrized 3
source intensity distribution (since §, =8, =8° £).

In a similar manner, the second and third terms in Equation (3.4)
can be examined to get

Ty =1 {% (x, + 12)] C[zk-r x, - 52)]. (3.10)

Figure 3.1b indicates the position of the center-of-mass vectors for
this term. Here £, = £, so that g is small and £/2 = g, = &- The

results of Equations (3.9) and (3.10) show that thz symmetrization and 1
multiplication processes lead to two spatial Fourier transforms of a E
symmetrized source intensity. One term depends on the difference of 3
coordinates in the far-zone (is spatially invariant); the other depends
on the global term. Since the spatial average of Equations (3.4) and
(3.6) invouivcs the translation of the global variable in the receiver
coordinates, term T2 3 of Equation (3.10) is summed to a constant and
contributes only for small global sizes and can be neglected in compari-
son to T, b for large global excursions. This result is true only for e
the spat1a1 average case. This can be seen by noting that the transverse 3
receiver correlation lag for optical sources in the far field is typi-
cally a few millimetres. Under the assumption of a large averaging area,
this means that term T, j would contr1bute only for g' < 3 mm, while

term T, , wouid contriblte for all g' up to the limit imposed by

-

C [Zr (x, + _2)]. The transform of the symmetrized source intensity

expressed in Equation (3.9b) is space invariant. However, C, the trans-
form of the phase correlation, is a function of the global variable. As
discussed earlier, the correlation function C(f) approaches a delta func-
tion if the critericn of spatial incoherence is applied to the surface
roughness over the source. Thus its transform, C(g), is nearly constant
over a wide band of spatial frequescies. Therefore, C(g') is relatively
insensitive to changes in its argument over wide ranges of spatial wave
number. But the argument of C is, in general, different for each pair
of multiplied intensities in the far field. Depending on the bandwidth
of C, the maximum averaging area can be specified so that no band limiting
occurs for the maximum global variation.

Apparently the term of Equation (3.10) arises because of the way in
which the source was symmetrized. When a source is considered symmetri-
cal, it is the intensity only which is symmetrical about the origin.
However, here, by the nature of the field symmetrization at the receiver,
there are two positions for which the phase correlation function is unity
rather than the usual one. The cross terms that form T, 3 give a scaling
to the Fourier transform that is quite different from the term Ty,u-
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Using the results of Equation (3,9b) and the fact that the term of
Equation (3.10) sums to a negligible constant under a spatial average,
we can finally write the correlation of intensities I'(x,;T) and I' (x,:T)

(-]

jwzdwj sinc (pT)H(p)do

) 0 -

.k
ff 15(5."") expf-i 7 (J_(_1 -iz) < gldg (3.11a)

-0

E © 2
/f C(E) expl-i o= (x, +x,) £]14df

-

l i [% (51—5_2)”2 ‘é [5—1‘; (51»«52)].2, (3.11b)

where Equation (3.11b) 1s written with the understanding that

<IN ;T)> =

T VTR

x

L
x

3
E
3

R

~ 1k 2 . 22, .
Ic [5;-(5J + 52)]| weights IIEI in a non-statinnary way over the

i receiver plane and is, hence, not strictly separable. However, this

] term is generally treated as a constant over the receiver plzne. 17 In
this equation, I (5 w) = I(§,w) + I(-§.w) which, by Equation (3.1a), is
the even part of the source intensity. In Equation (3. 11b),

Atk e Vo

i [ - x )]I is the spatial power spectrum of the even part of the
source 1nten51ty distribution and |C[ (x, + 52)]|2 is the spatial

sl

power spectrum of the source phase correlation function.

Wk gkt

This information will be used below to form the image I(§,uw). i

3.4 The Transform Inversion

i ety o

Using the results of Equation (3.11) and the modulus of the total
transform, we can now find the intensity distribution on the source,
I1(§,w). In Figure 3.2a, we illustrate the measured spatial power spec-
trum derived by the method of Sectior 2. TIf the (positive) square root
is taken, the modulus of the transform (Figure 3.2b) is known.

Figure 3.3a illustrates the spatial power spectrum of the even part of
the source intensity derived in Equation (3.11). By the hermitian
property of the transform,2? the spectrum itself is pure real. We take
the square roct (Figure 3.3b), but with a sign ambiguity such that two
spectra are derived, one the negative of the other. The proper spectrum
can be inferred, however, on the basis of the central-ordinate property
of the Fourier transform (Ref. 24, p. 136), whereby the definite integral
of a function over infinite limits in one space is equal to the value of
of its transform at the origin. Since the i.tensity is a positive-
definite function, the prcper spectrum is positive at the origin.
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Figure 3.2 (a) Representation of spatial power spectrum of
source intensity distribution, IIIZ, vs. spatial wave number k..
(b) Modulus of power spectrum, [I|, vs. spatial wave number ks.
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Figure 3.3 (a) Power spectrum of even part of source distribution,.
(b) Two possible real spectra of the even part of the source

distribution. The spectrum which is negative for ks = 0 can be
eliminated.
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Now, using Figurec 3.2b and 3.3b, we know the modulus and the pro-
jection on the real axis for each spatial wave number koS‘ Figure 3.4

A
Im I(k,g)

-
w—

A
Re I(k,g)

N A
~
‘\\EEEE }
~

~

Figure 3.4 For a particular spatial wave number, kg, the
modulus and its projection on the real axis, fE, are shown.
As indicated by the lower dotted 1ine, the modulus could be
located in the lower-half plane, thus giving two possible
values for the phase of the transform.

illustrates this point by showing the length of the modulus, |[I|, and its
projection (possibly negative), TE, on the real axis. It should be noted
that there is also a sign ambiguity here in the phase angle, for the
modulus could appear in the upper- or lower-half plane. From the present
information, there appears to be no way to resolve the sign of the phase
angle. Thus two phases are derived, one the negative of the other. If
each phase record is used with the modulus in a Fourier inversion opera-
tion, two images are derived, one the symmetrical inverse (reflection
through the origin) of the other, much the same as Gamo found by a
triple-correlation technique.m’2

However, in practice, the choice of the proper (erect) image would
seem to be straightforward through the use of a further property of the
Fourier transform. The first mcment of a function can be shown to be

(Ref. 24, p. 138) .
()]
/Xf(x)dx‘ “Ini

(3.12)

where F'(0) is the first derivative of the transform of f(x) evaluated at
the origin. It should be noted that, her~, origin refers to the point
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where the argument of the F' function is zero; it does not imply that
the derivative is inferred through a measurement constrained to the
neighbornood of the origin in the receiver coordinates. Substituting
I(§) for f(x), the operation of Equation (3.12) describes the point
where I(§) is mainly concentrated. Since, in practice, we can always
translate the source in a known direction off axis by pointing the
receiver system, the source can be moved into, say, the right-half plane.
This means that the centroid is positive, such that the slope of the
spectrum must be negative at the origin. Using this information in
Figure 3.4 for the spatial wave number kg = 0, we can choose the phase
plot with negative slope. Thus the proper orientation of the image is
inferred, and the source intensity distribution is ccmpletely specified.

We note that in these operations the Whittaker-Shannon sampling
theorem must be considered with respect to both the spatial-frequency
content of the source and its position relative to the axis of the
viewing system. The method here depends on the uniqie inference of two
spectra by means of the preprocessed detection scheme. The behavior of
the spectra as inferred from the power spectra is particular.y critical
as the functions approach zero crossings. There the ambiguity of the
functions must be inferred on the basis of continuity arguments. Thus
the limitation on the method appears to depend on noise in the process
which might obscure the behavior ac¢ these critical points. Also, by
the effect of the shift theorem,24 even a low spatial-frequency source
when positioned off axis would exhibit fast phase variation, causing
the spectra to go through many zero crossings.

There is a second method of data reduction that is more expedient
than the above dual operation. If the object is pointed sufficiently
far off axis such that the twin images of the symmetrized field do not
overlap, then the standard processing leading to the modulus of the
transform can be ignored. The intensity record from the symmetrized
field can be used to form the twin images, since the transform is pure
real, using the criteria of Figure 3.3 to resolve the proper sign of the
square root. After reconstruction, one of the images can be discarded.

3.5 Measurement Technique

The operation of Equation (3.2) must be accomglished in real time
before intensity detection. Wessely and Bolstad,2 in a study of
turbulence-induced phase fluctuations, have utilized an optical device
that achieves such field symmetrization. A beam-splitter cube, illus-
trated in Figure 3.5, divides the incoming wave (I) into two parts, each
of which is inverted by right-angle prisms rotated 90° with respect to
each other. After recombination, the field (at F) has the form of
Equation (3.2). We note that the ray paths for each leg of the splitter-
inverter undergo an odd number of reflections; hence, with respect to

the incident wave, the rccombined field at F exhibits a change in handed-
ness in both the inverted and non-inverted images. The proper handedness
can be restored, of course, by utilizing an additional planar reflection,
In an actual application, it is likcly that the splitter-recombiner would

47




VAT

F

3 Figure 3.5 Beam-splitter cube that divides the
1 wave into two parts, each of which is inverted
by right-angle prisms (1,2) rotated 90° with

3 respect to each other. After recombination at

3 F, the electric field has the form of Eq. (3.2).

be preceded by a telescope, a practical necessity to reduce unwanted
background illumination and to increase the effective size of the detec-

tion plane. In contrast to the experiment of Hanbury Brown and Twiss, i
the optical parts preceding the detector plane would have fo be high
quality.

The inversion operation described in Section 3.4 can, of course, be 5
accomplished by electronic processing following reading of the intensity %
records. It is not clear how purely optical techniques could be used,
since there is a series of decisions that must be made involving signs
of square roots and continuity of functions at zero (abscissa) crossings.

oo it S A

3.6 Summary and Conclusions

We have shown that by preprocessing the electric field in a simple i
way to gain symmetry, the technique of intensity interferometry can be
used to derive the intensity profile of a source of arbitrary symmetry.
This result is accomplished by comparing the intensity-correlation func-
tions of the processed and normal intensity records, It 1s interesting
to note that it is not necessary to invoke the methods of higher-order

correlationslo’22 to infer the phase of the spatial transform,

48




4. LASER SPECKLE AND SPATIAL INTENSITY INTERFEROMETRY
4.1 Introduction

In this section, w~ will discuss the relationship between the well-
known nhenomenon of laser speckle and spatial intensity interferometry.
There is a strong similcrity between the results derived in Section 2
and previous analyses dea'ing with laser spechle; both areas of theory
show that the absclute square of the source-intensity Fourier transform
is proportional to the far-field correlation of intensities. Although
the mathematical relations between the source and detection planes are
similar, the intensity signals at the detection plane that are auto-
correlated arise frcm different phenomena. Laser speckle theory is
formulated in terms of a monochromatic field scattered from a rough sur-
face. The time-invariant speckle pattern in the far field originates
from the interference of monochromatic waves from different points over
the scattering surface. Spatial intensity interferometry is formulated
in terms of quasimonochromatic radiation scattered from a rough surface.
A time-dependent speckle pattern in the far field is generated by inter-
ference of different temporal frequencies scattered from the source.
Thus the temporal response of the detector must be sufficiently short to
resolve the time-varying, intensity-interferometric signal. However,
the time-invariant speckle pattern can be recorded with a long exposure.

We will discuss the mathcmatical similarities between these two
theories.

4.2 Laser Speckle Formulation

Two papers, representative of laser-speckle investigations, are due
to Goldfischer26 and Crane.27 Although there are some discrepancies in
the results of these efforts,2’ the basic conclusions are similar. To
illustrate the results of laser speckle, we use the work of Goldfischer.

We start by noting that Goldfischer argues for a diffuse surface
model that contains 'an infinitely dense collection of scatterers...with
random phases." He .s thus implicitly argued for the criterion of spa-
tial incoherence even though he does it utilize this concept in a quan-
titative way [cf. Equation (1.7b)]. Goldfischar begins with a real form
of the Huygens-Fresnel equation (cf. Section 1.2) by writing the electric
field in che receiver plane as

ooy _ lal(g,n Aﬁﬂ—l’ ., ., XE+yn
E(x,y) = (——L—%— J cos[k(c._ + )+ exy* d’gnJ R (4.1)

.- nr T

where the field, E(x,y), is due to the particu. 4ar area on the scatterer
at AfAn, wén is a random phase angle associated with the scatterer at

(E,n), and @__ is a coefficient written to absorb the terms neglected in
Xy
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Equation (1.2b) and depends on the location of the point of observation,
and ¢ is the scattering efficiency of the surface. We note that Equation
(4.1) reveals a monochromatic treatment of the scattered laser radiation.

Next. the field at the receiver plane is squared to form the inten-
sity, giving

I(x,y)

"

asgan Z Z[I(s,n)r(z'.n'n’f

2nr
E,n &,n!

- - ? t
k/XE*)’n) (xc +yn )
x;cos L\ r *Vgagcos Lk T Y| (423

Tk (2509, y Tein Ti (X6 tyn'
+ sin _k ( .- ) + Vgn] sin -k ( = } + w&'n'] %

- stk > leta,n)rcﬁ’,n')];’ (4.2b)

£,n &')n'

x cos [k x(£-6) + y(n-n")
T

* g V)]

The summations of Equation (4.2) are later allowed to approach integrals
as the areas AfAn go to zero. There are two distinct forms for this
equation. If the primed terms are equal to the unprimed terms, the mean
intensity in the far field is derived. This is the dc term of no use tc¢
us here. The intensity I(x,y) of utility here has the mean subtracted
out, and we restrict, as does Goldfischer, the summations of Equation

(4.2) to occur only over the unequal primed and unprimed variables, i.e.,
we require £#£' and/or n#n'.

We now define new variables of integration
Le-er=0 and £ty =0 (4.3)

Using these relations, the spatial intensity autocorrelation function in
the far field of the source is formed, where averaging eliminates terms
involving random phases to give
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and the spatial lag in the detector plane is expressed by

Y = X) - Xy and 6 = Yy - Yy (4.5)

Thus the right-hand side of Equation (4.4) expresses the autocorrelation
of intensities in the far field as a Fourier transform of the auto-
correlation of intensities over the source.

Finally, using the autocorrelation theorem, Equation (4.4) can be
written in the form given by Goldfischer where

SI(x)) I(x,)> = (a?/8ar%) |1(y,8) |3, (4.6)

i(Y:'S) =// dc’, dn I(‘:sn) oxXp [1 ':\‘T (YE; + 6“)]0 (4.7)

This result, utilizing only a monochromatic formulation, is identical in
form to the comparative expression of spatial intensity interferometry
given in Equation (2.36); the intensity autocorrelation function in the
far zone of a spatially incoherent source is proportional to the absolute
square of the spatial Fourier transform over the source. However,
Equation (4.6) reflects no constraint involving the exposure time. As
indicated by Equation (4.2b), tie useful intensity signals in the receiver
plane arise froem interference of monochromatic waves over different por-
tions of the source plane.

and

4.3 Summary and Conclusions

We have seen that both laser speckle and spatial intensity inter-
ferometry techniques indicate that the far-field correlation of intensi-
ties is proportional to the absolute square of the source-intensity
Fourier transform. However, laser speckle theory describes scattered
monochromatic radiation in a time-independent pattern requiring no expo-
sure control to detect. In contrast, spatial intensity interferometry
is formulated in terms of quasimonochromatic radiation that yields a
time-varying pattern. Exposure contrc! commensurate with the bandwidth
of the radiation is required to resolve the pattern.
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We have seen that both the time-varying and time-invariant speckle
patterns contribute to the useful signal describing the source intensity
distribution. We must ask, ic it to be expected that speckle recording
with short exposures would result in an increased signal in the auto-
correlation process due to the time-varying signal which would otherwise
be lost? It would seem that the answer lies in the nature of the corre-

lation between the two kinds of patterns. This question will be examined
experimentally in the next section,

5. EXPERIMENTS IN INTENSITY CORRELATIONS

5.1 Introduction

In this section, we examine supporting experimental evidence for
some of the basic ideas encountered in this dissertation. Specifically,
in Section 2, we showed that through the utilization of intensity beat
signals at a detection plane, a spatial Fourier transform relation 1is
derived with respect to the source-plane irradiance distribution. In
Section 4, we showed that the Fourier transform relation between the
source and detection planes using time-varying intensity beats of an
optical source is identical to that derived in laser speckle theory<5,27
using a monochromatic formulation. Since these two theories are identi-
cal in their spatial transform relations, we will show first the results

of unpublished laser speckle experiments performed by Peppzrs28 which
verify these relations.

As we have discussed in Section 4, the signal utilized in laser
speckle theory (and by Peppers in his experiments) is time iusvariant,
and, hence, can be recorded with a long exposure. Here, we will refer
to this signal as the "dc speckle pattern." By analogy, the time-varying
intensity signal of import to the intensity-interferometry formalism we
will refer to as the "ac speckle pattern.' In the iatter half of this
section, we will describe our own measurements of intensity fluctuations
in a laser speckle pattern. By these experiments, we can infer the

existence of an ac speckie pattern, the nature of its fluctuations, and
its relation to the dc speckle pattern.

5.2 Experiments in Spatial Intensity Correlation

We describe now the intensity correlation experiments cf Peppers28
which illustrate the transform relations given in Sections 2 and 4. The
experimental configuration that he used is similar to that illustrated
earlier in Figure 2.1. A helium-neon laser has been used to illuminate
an opal-glass diffuser (to introduce spatial incoherence) followed
immediately by an object; it consists of a 200-mesh grid of square holes
outlined by a 1.22-nm circular hole in a metal plate. A photograph of
this object is shown in Figure 5.1. This grid, along with the glass
diffuser, was placed at plane O illustrated in Figure 2.1. At plane F,

the resulting dc speckle pattern was recorded phctographically and is
shown here in Figure 5.2.
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Figure 5.1
A 1.22-mm circular hole outlines a 200-mech grid.
(Courtesy of N. A. Pepper'zg)

Figure 5.2 Far-field speckie pattern of objegg
shown in Figure 5.1 with opal-glass diffuser,
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The rantographic record made at vlanc F, Figure 2.1, was used to
make a pasr of positive transparencies in order to form the autocorre-
lation function given in Equation (4.5). In Figure 2.2, we illustrated
a standard way in which an autocorrelation function can be formed by
translating physically one transparency to all vector spatial lags ff.
An alternative approach, used by Peppers, is shown in Figure 5.3.

O «
- o

DT, T, F

Figure 5.3 Optical system used to furm the correlation of
transparencies, Ty and T,. Collimated 1ight impinges from
the left onto diffuser, D. Distance between T; and T, is d,

and f indicates the focal length of the lens. F denotes
the film plane.

Collimated light from the left is diffused at plane D where the first
transparency, Ty, is placed.
a second identical positive, T,, is positioned and followed directly by
a lens of focal! length f. At the focus of the lens, film (F) records

the two-dimensional autocorrelation function.
cal optics intcrpretation of this system reveals this operatior. as well
as the equation governing the spaticl magnification; in the film plane,

s = ff'/d, (5.:)

where s is the spatial lag in the film plane, f is the focal length of

the lens, i’ is the spatial lag between the transparenci~s, T; and T,
and 4 is the distance between the two transparencies.

The results of this operation are shown in Figure 5.4 We note a
central spot containing low-frequency information about the objeci cen-
tered among four side lobes, reflecting surong spatial-frequency content
due to the periodicity of the 200-mesh grid. The signal illustrated in
Figure 5.4 is the function given by Equation (4.6). It should be noted
that the intensity relation of Equation (4.8) is similar to the expres-
sion in electric fields given by Equation (1.3). Peppers recoxrded the
square of the electric field expressed by Equation (1.3) by using the
Fourier *ransform apparatus of the kind illustrated in Figure 2.1 after
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Figure 5.4 Optical autocorrelation of speckle pattern shown in Figure 5.2."8
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first removing the ground glass at plane 0. The result is presented in
Figure 5.5 and is to be compared with the function sh.wn i1n Figure 5.4.
Except for the spatial noise of Figure 5.4, the two fanctions are similar
in the manner indicated by Equations (1.3) and (4.6). :

+

Figure 5.5 Diffraction pattern of object in Figure 5.1 made by
configuration illustrated in Figure 2.1 after
removal of optical diffuser at plane 0.28

55




In the previous chapter, the autocorrelation theuvrem was used by
Goldfischer26 to relate the Fourier transfoxrm of the source intensity
autocorrelation [Equation (4.4)] to the equivalent expression of the

squared modulus of the source intensity Fourier transform [Equation (4.6)].
Peppers illustrated this equivalence by the following operations. First,

the source irradiance (Figure 5.1) was photographea nd autocorrelated
to form the object autocorrelation function (Figure 5.6). Next, both

the intensity autocorrelation function (Figure 5.4) and the squared modu-

lus of the diffraction pattern (Figure 5.5) were optically transicrmed
to effect the Fourier inverse of the first operation of Equation {4.4);
these results are shown in Figures 5.7 and 5.8, respectively. Although

the signal quality of Figure 5.7 is somewhat poor, the similarity among
these operations can be seen.

On the basis of these intensity correlation experiments, it appears
that the spatial transform relations predicted by Goldfischer for the dc
speckle pattern can be verified. We have shown in this dissertation the

equivalence between the spatial transform relations for the dc and ac
speckle signals. It remains now to show the specific relationship

between these two speckle patterns. We examine this subject experimen-
tally in the next sections.

5.3 Conditions for Coherence

Before examining laser speckle patterns experimentally, we find it
useful to review che conditions for obtaining spatially fixed inter-
ference patterns. A discussion of these criteria, as well as detailed
experiments into the nature of speckle patterns, has bheen given by
Martienssen and Spiller.29 We follow closely their development.

It can be asserted29 that each oscillation mode of a source can
interfere only with itself. Since the voiume of an oscillation mode in
phase space is h3 (where h is Planck's constant), the Heiserberg uncer-
tainty relation can be used to write the ranges in position (x,y,z} and
momentuwn (px,py,pz) for a photon in the mode, where

8x 8p = h, (5.2a)
by Apy = h, (5.2b)
Az Apz = h. (5.2¢)

If the mode propagates in the z direction, the uncertainty of the mcmen-
tum in the x-z and y-z planes |per Equations (5.2a) and (5.2%)) can be
expressed in terms of the angular apertures 24u,, 24u, of the beam in
the x-z and y-z planes. Using the rclations h/p = i Xnd singu, = Apx/p,

X
sinAuy = Apy/p, we can write
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Figure 5.6 Autocorrelation of object
function illustrated in Figure 5.1.28

3 Figure 5.7 Opticél Fourier transggrm
of signal function of Figure 5.4.

Figure 5.8 Optical Fourier transfgrm
of signal function of Figure 5.5.2
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>

Ay sin Auv (5.3b)

Using &p_ = hAv/c and Az = c4t, where Av is the frequency spread of the
light and At is the time during which the beam is observed, Equation
(5.2¢c) can be used to get

&y 6t = 1. (5.4)

The values of the angular apertures 24u_, 24u_ which fulfill Equations
(5.3a) and (5.3b) are called the coherefice angles, and the value of
observation time At fulfilling the criterion of Equation (5.4) is called
the coherence time. Angles iess than the angular apertures define the
conditions for spatial coherence, or

@, << Aux’ (5.53a)
and
a_ << fu . (5.5b)
y y

Observation times less than the coherence time At fulfill the condition
for temporal coherence, or

T << at. (5.6)

If the criteria of Equations (5.5a) and (5.5b) are met, a section of a
light beam will experience no fluctuation in space, although, depending
on the observation time T and the inequality expressed by Equation (5.6},
it may experience fluctuations in time. In addition, if a light beam is
observed in a time fulfilling the criterion of Equation (5.6) (is tem-
porally coherent), then there will be no fluctuations in time; but if

the cbservation area is large enough, there will be fluctuations in space.

5.4 Experiments in Temporal Intensity Fluctuations

Martienssen and Spiller29 were apparently the first to suggest the
use of a laser-illuminated rotating ground glass to model a thermal source
with variable ccherence time. FEven with a laser, the finite width of its
frequency spectrum implies some fluctuations in intensity. These fluc-
tuations can be filtered using a detector with a slow response. If the
laser illuminates a section of ground glass, the random phase variations
intrcduced in the beam are similar to the phase mapping that would be
observed cver an incoherent source if the measurement were made in u
time less than the coherence time. Thus the stationary ground glass
corresponds to the case of infinite temporal coherence. By rotating the
ground glass, the phase variations over the source can be made to change
with a coherence time inversely proportional to the angular velocity of
the ground glass.
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This experimental approach was used by Martienssen and Spiller to
repeat the Hanbury Brown - Twiss laboratory experiment in which the cor-
relation of intensity fluctuations in a beam was examined as a function
of detector separation [see Equation (1.21)]. We have duplicated that
experiment using a setup illustrated in Figure 5.9. A Spectra-Physics
Model 125 helium-neon laser is used to illuminate a section of grcund
giass that can be kept stationary or rotated by a motor. The far-field
pattern is divided by means of a beam splitter and examined by two
photomultipliers, one of which can be translated transverse tc the cpti-
cal axis. The outputs of the photomultipliers are fed through ampli-
fiers with a dc block into an electronic correlator (Princeton Applied
Research Correlator, Model 101). The cross-correiation of the two sig-
nals is observed by means of an oscilloscope readout.

LASER < *Mz A2
M ‘ S
GG
il FMT]_’ CORR O
Al - SCOPE

Figure 5.9 Experimental configuration for the correlation of temporal
fluctuations within a laser speckle pattern. Ground glass (GG) can be
spun by means of motor (M); beam splitter (S) divides speckle pattern
into two images that are viewed by photomultipliers (PM1,PM2); outputs
are fed through amplifiers (A1,A2) into electronic correlator and into
display oscilloscope. Photomultiplier PM]l can be translated across
the beam.

In Figure 5.10, we show the correlator output for the case of the
rotating ground glass and complete alignment of the two photomultipliers.
The correlation of electronic signals is shown as a function of time
delay between the two signals. The integration time of the correlator
is 15 s, and the maximum delay shown is 50 ms. The computad correlation
time of the irradiance fluctuations can be shown to be on the order of
20 us. Thus the correlation behavior of central interest is not resolved
by the scale used in Figure 5.10. Because of the rotation of the ground
glass, the correlation function is periodic. This periodicity, as well
as the fine structure on the correlation function due to the non-ideal
operation of the spun ground glass, can oc easily remcved by use of
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Figure 5.10 Oscilloscope trace of correlator output. Corre-
lation C(1) is plotted vs. time delay, 1, between fluctuating
signal components. Both optical detectors viewed the same
area of the laser speckle pattern. Each division along the

1 2xis corresponds to a time delay of 10 ms.

high-pass filters before the process of correlation. In the experiments
that follow, the correlation lag (1) scale was expanded to give the
maximum (system tested) temporal resolution on the order of 5 us. In
addition, the following measurements make use of the correlation at zero
time delay (origin of the correlation function).

We examined the correlation of intensity fluctuations as a function
of detector separation. Figure 5.11 shows the results; the correlation
is given versus spatial lag (£f). The spatial correlation interval in
the receiver plane is a function of the spot size on the ground glass;
for the setup used the predicted interval is about 0.065 mm. The detector
apertures were about 0.3 mm for reasons of detector efficiency in ensuing
experiments. Thus the shape of che correlation is more a function of
detector aperture than source function. The apparent correlation interval
is about 0.3 mm. It can be seen that the results show a residual corre-
lation level which is due to low-frequency components in the beam. These
low frequencies were pregressively eliminated using the high-pass capa-
bility of the amplifiers. The residual correlation was essentially gone
after removal of fluctuations lower than 500 Hz. These results illustrate
the predicted relation of Equation (1.21) and compare as well with the
experiment of Martienssen and Spiller (Ref. 29, Figure 7).

The question posed in an earlier section involves the 1elation
between the static (dc) and time-varying (ac) speckle patterns due to a
laser source. The setup of Figure 5.9 was used to investigate this phe-
nomenon by keeping the ground glass stationary and examining the temporal
fluctuations due to the laser itself., The stability of this nelium-neon
laser is such that the intensity fluctuations compose only a small
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Figure 5.11 Normalized crosscorrelation of intensity fluctuations
vs. difference of detector positions (f') for the case of spinning
ground glass. Spatial correlation interval (CI) and detector
aperture size (AS) are shown. Coherence time of the radiation
20 ps. Curves a, b, and ¢ indicate high-pass filtering starting
at 1, 100, and 500 Hz, respectively.

fraction {< 1%) of the average intensity lev:l. OUne might imagine that
the temporal mode fluctuations across the laser wave front are every-
where identical since the source is spatially ccherent. In the far
field where tne speckle pattern appears, the temporal intensity [lluctu-
ations should be completely correlated; this concept can be stated
simply

I(x),t) = A(x,) I(x,,t), (5.7)

or the temporal fluctuations of intensity at one point in the speckle
pattern are identical to the temporal fluctuations at another point in
the pattern times a constant which depends on the average value of the
intensity at that point. This constant is, in fact, the dc speckle
pattern at that particular point.

The crosscorrelation function was measured as before but with the
ground glass stationary. For each spatial lag, the correlation at zero
temporal lag and the dc photocurrent on the movable detector were meas-
ured. We note that the intensity fluctuations due to the laser are a
full two orders of magnitude lower than the rotating ground glass fluc-
tuations. The photomultipliers were operating near the limit imposed
by shot noise; evidence for this observation is given by comparison of
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the crosscorrelation of photomultiplier signals at zero spatial lag with
the autocorrelation of one signai. The autocorrelation is a factor of
two greater because of the corielation of noise; under crosscorrelation
the uncorrelated noise terms vanish. The correlation was normalized by
the dc value, and the results are shown in Figure 5.12. As before,

1.0 \/'\/\Q/

' b
c(f’)
- QoF+
0.0 4 —
0.0 { 2
f' in mm

Figure 5.12 Normalized crosscorrelation of intensity fluc-
tuations vs. difference of detector positions (f ) for the

case of static ground glass. Spatial correlation interval

and detector aperture size are shown in Figure 5.11.

Curves a and b irndicate high-pass filtering of 500 and 1 Hz,
respectively.

high-pass filtering of 1 and 500 H:z was applied to the two data runs
shown. The detector aperture size and spatial correlacion interval
remained the same. As can be seen, the temporal fluctuations are com-
pletely correlated for distances greater than forty times the spatial
correlation interval for this situation in which a spatially coherent
source illuminstes a time-independent phase screen. Here, the ac speckle
pattern is identical to the dc speckle pattern and appears merely as a
fluctuation around the average (dc) value. On the average, then, in

this situation there is no gain by making a fast exposure, even if the
depth of modulation were somewhat greate¢r than one percent.

It should be noted that this condition was anticipated earlier above
Ecuation (2.32). There it was argued that all areas of the scatterer
see the same mode history (i.e., the source is spatially coherent) and
that, therefore, the mode fluctuation of the laser would simply be seen
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as a variation in total received power from one sample to the next. The
measurements of Figure 5.12 bear out this concept.

5.5 Summary and Conclusions

In this chapter, we have seen the way in which the far-field speckle
pattern of a spa*ially incoherent source can be related to the intensity
over the source itself. We have also discussed the conditions for spatial
and temporal cohecrence and investigated, experimentally, the correlation
of temporal fluctuations in laser speckle patterns. It can be seen that
laser speckle theory26,27 forms the limiting case in intensity inter-
ferometry in which the coherence time of the source becomes large and
for which the averaging is accomplished in a spatial sense. At the oppo-
site extreme is found the Hanbury Brown - Twiss experiment in which an
incoherent source is monitored by means of temporal fluctuations averaged
along the time axis. We have seen [in Equation (1.20)] that many of the
beat ‘requencies in the carrier wave are not useful, practically, because
of the limitations in detector frequency response. This dissertation
bridges these limiting cases by formulating the case of quasimonochromatic
radiation (finite coherence time) detected and averaged in the spatial
domain.

To elucidate the ultimate equivalence among these approaches, we
turn to Figure 5.13. We have represented an ensemble of similar con-
figurations of source-detector planes. We imagine the field-amplitude
distribution across each plane to be identical as well as the two detec-
tion points in the receiver planes. The Hanbury Brown - Twiss case
(quasimonochromatic source, temporal averaging) is taken first. We let
each member of the ensemble represent an intensity measurement made in a
time less than the coherence time of the radiation. The phase structure
over each source surface is therefore frozen, but statistically inde- ;
pendent from one another. Hanbury Brown and Twiss started by forming 3
the product of intensities at the two detection points in, say, the ith 3
member. They, of course, wanted the ensemble average of that product
and, through the assumption of iemporal stationarity and ergodicity, .
sought the equivalent operation by means of a time average. Thris can be
visualized by allowing the member j to represent the identical source
amplitude now exhibiting a new phase structure due to the evolving tem-
poral mode histroy over the source. As many samples are averaged in
time, the function approaches the ensemble average.

LT

In the case of spatial averaging, the ith sample ~an be taken as a :
spatial recording of intensities in the x-plane over a time short com-
pared with the coherence time of the radiation. Two points within the
pattern can be sampled to form the product but, again, it is the ensemble
average that is desired. Here, through the assumption of spatial sta-
tionarity (and a sufficiently large area of spatial averaging), the spa- E
tial average is assumed equivalent to the ensemble average. :

Rt gk
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Figure 5.13 An ensemble of similar experiments. Source ampli-
tude and receiver points are identical. Random phase variations
over each source plane are statistically independent.

We note that all the schemes involving intensity correlation require
a random phase structure across the source. It is achieved naturally
for an incoherent source, and for a spatially coherent laser it can be
accomplished by use of a diffusing glass. We note that this condition
is described analytically by the exponential term of Equation (2.31).
This term is written sufficiently general to include phase perturbation
due either to spatial surface roughness or to temporal mode difference.
: It should be noted that a suitably prepared broad-band laser might be
3 utilized without ground glass if the temporal mode structure could be
1 sufficiently varied in a statistically stationary way over the scattering
surface.

We note again, as we did at the beginning of Section 1, that the
focus of primary interest in optical imaging is the spatial domain. How-
ever, we have seen that the ability to detect intensity fluctuations and
the manner in which an average is finally taken rests in a most crucial
way with the nature of the temporal statistics of the radiation.
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